Tracks personal best times for standard distances (1k, 5k, 10k, half marathon, marathon) by analyzing detailed activity files from Strava export data.
Arguments
- activities_data
A data frame of activities from
load_local_activities(). Must contain columns: date, type, filename, distance.- export_dir
Base directory of the Strava export containing the activities folder. Default is "strava_export_data".
- activity_type
Type of activities to analyze (typically "Run"). Default "Run".
- start_date
Optional start date for analysis (YYYY-MM-DD). If NULL, defaults to 365 days before
end_date.- end_date
End date for analysis (YYYY-MM-DD). Default
Sys.Date()(today).- distances_m
Target distances in meters to track. Default: c(1000, 5000, 10000, 21097.5, 42195) for 1k, 5k, 10k, half, full marathon.
- verbose
Logical. If TRUE, prints progress messages. Default FALSE.
Value
A data frame with columns: activity_id, activity_date, distance, elapsed_time, moving_time, time_seconds, cumulative_pb_seconds, is_pb, distance_label, time_period
Details
This function analyzes detailed activity files (FIT/TCX/GPX) to find the fastest efforts at specified distances. It tracks cumulative personal bests over time, showing when new PBs are set.
Personal best tracking is a standard approach in endurance sport performance monitoring. Systematic PB analysis over multiple distances helps identify fitness improvements, training phase effectiveness, and performance peaks (Matveyev, 1981). The multi-distance approach enables athletes to assess both speed (shorter distances) and endurance (longer distances) progression simultaneously.
Examples
# Example using simulated data
data(sample_pbs)
print(head(sample_pbs))
#> # A tibble: 6 × 10
#> activity_id activity_date distance elapsed_time moving_time time_seconds
#> <chr> <dttm> <dbl> <dbl> <dbl> <dbl>
#> 1 activity_1 2023-01-01 00:00:00 1000 256 256 256
#> 2 activity_2 2023-01-01 00:00:00 5000 1373 1373 1373
#> 3 activity_3 2023-01-01 00:00:00 10000 2877 2877 2877
#> 4 activity_4 2023-01-01 00:00:00 21098. 6582 6582 6582
#> 5 activity_5 2023-02-01 00:00:00 1000 255 255 255
#> 6 activity_6 2023-03-01 00:00:00 1000 246 246 246
#> # ℹ 4 more variables: cumulative_pb_seconds <dbl>, is_pb <lgl>,
#> # distance_label <fct>, time_period <Period>
if (FALSE) { # \dontrun{
# Load local activities
activities <- load_local_activities("strava_export_data/activities.csv")
# Calculate PBs for standard running distances
pbs_data <- calculate_pbs(
activities_data = activities,
export_dir = "strava_export_data",
activity_type = "Run"
)
print(head(pbs_data))
# Calculate PBs for custom distances (e.g., 400m, 800m, 1500m for track)
track_pbs <- calculate_pbs(
activities_data = activities,
export_dir = "strava_export_data",
activity_type = "Run",
distances_m = c(400, 800, 1500, 3000) # Custom distances in meters
)
} # }